Answer:
A. 
B. 
C. 
Explanation:
The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

is the capacitance,
is the common plate area,
is the plate separation and
is the permittivity of the material between the plates.
For air or free space,
is
called the permittivity of free space. In general,
where
is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum,
.
The energy stored in a capacitor is the average of the product of its charge and voltage.

Its charge,
, is related to its capacitance by
(this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for
,

A. Substituting for
in
,

B. When the distance is
,


C. When the distance is restored but with a dielectric material of dielectric constant,
, inserted, we have

Answer:
D) wood rubbed against a rough surface feels hot
Explanation:
The heat is transferred from one form of energy (friction of the wood being rubbed against the surface) to another (heat energy).
Answer:
Mg will replace Ag in a compound
Explanation:
A single replacement reaction is driven by the position of ions on the activity series.
As a rule of thumb, the position of metal ions on the activity series determines their reactivity.
Metal ions that are above another are more reactive and they will displace those that are lower.
Generally, activity increases as we go up the group.
Mg ions are higher than Ag ions on the series so, Mg will displace Ag from a solution.
The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)
Answer:
V1 =8.1 m/s
Explanation:
height at highest point (h2) = 4.1 m
height at lowest point (h1) = 0.8 m
acceleration due to gravity (g) = 9.8 m/s^{2}
from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore
mgh1 +
= mgh2 + 
where
- speed at highest point = V2
- speed at lowest point = V1
- mass of the girl and swing = m
- at the highest point, the speed is minimum (V1 = 0)
- at the lowest point the speed is maximum (V2 is the maximum speed)
- therefore the equation becomes mgh1 +
= mgh2
m(gh1 +
) = m(gh2)
gh1 +
= gh2
V1 = 
now we can substitute all required values into the equation above.
V1 = 
V1 = 
V1 =8.1 m/s