1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
8

A diver with a mass of 80.0 kg jumps from a dock into a 130.0 kg boat at rest on the west side of the dock. if the velocity of t

he diver in the air is 4.10 m/s to the west, what is the final velocity of the diver after landing in the boat?
Physics
1 answer:
Bogdan [553]3 years ago
8 0
Applying conservation of momentum;

m_{1}  v_{1} + m_{2}  v_{2} = m_{f}  v_{f}

Where m1 = 80.0 kg; v1 =4.10 m/s; m2 = 130.0 kg; v2 = 0; mf = (80+130) kg; vf = ??

Therefore,
80*4.1 + 130*0 = 210*vf
vf = (80*4.1)/210 = 1.56 m/s
You might be interested in
What is 1960 in scientific notation
Ksenya-84 [330]
Here you go- 1.96 x 10^3
8 0
3 years ago
6. A lumberjack is standing on a log floating on a lake. She starts from rest, then runs along the log to the end, when she jump
scoray [572]

Answer:

a) -3.267 m/s

b) 2.227 m/s

Explanation:

As per the conservation of momentum

m1v1 + m2v2=0

m1= mass of log

m2 = mass of lumber jack

v1 = velocity of log

v2 = velocity of lumber jack

a) Velocity of first log

-\frac{70*7}{150} = -3.267 m/s

b) m1v1 + m2v2 = m3v3

Velocity of log

= \frac{70*7}{150+70} \\2.227

4 0
2 years ago
A capacitor acquires a charge of 0.003 C when connected across a 30-V battery. Its capacitance is _____.
USPshnik [31]
Charge stored in a capacitor given by Q = C*V.

So, C = Q / V.

V=30V,  Q=0.003C

C = 0.0001F  or 100μF
5 0
3 years ago
CHAPTER 6: KINETICS OF A PARTICLE
vekshin1

Explanation:

Work done by winch = kinetic energy of car

∫ T ds = ½ mv²

∫ 225s ds = ½ mv²

225/2 s² = ½ mv²

225 s² = mv²

v = 15s / √m

Given s = 10 m and m = 2500 kg:

v = 15 (10) / √2500

v = 3 m/s

8 0
3 years ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
Other questions:
  • The aircraft link is made from an a992 steel rod. determine the smallest diameter of the rod, to the nearest 1 /16 in., that wil
    7·1 answer
  • I need help with this one
    11·1 answer
  • Does the moon light originate from the moon only
    11·1 answer
  • How does distance affect gravity???
    7·2 answers
  • What is the lowest frequency that will resonate in an organ pipe 2.00 m in length, closed at one end? The speed of sound in air
    15·1 answer
  • What will an object weigh on the Moon's surface if it weighs 100 N on Earth's surface? (b) How many Earth radii must this same o
    5·1 answer
  • The number 14 is the 'mass number'. What does it tell us about this isotope?​
    6·1 answer
  • Why is it hard to make a connection between extreme weather events and climate change?
    15·1 answer
  • Find the mass of an object with force 280 Newton and acceleration as 18 m/s2.​
    5·1 answer
  • What is used to calculate or determine intensity during exercise
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!