The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.
Answer:
Isn't love a social construct?
Explanation:
Answer:
<h3> 1.40625m/s²</h3>
Explanation:
Using the equation of motion expressed as v = u+gt where;
v is the final velocity of the ball
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Given
u = 9m/s
v = 0m/s
t = 6.4s
Required
acceleration due to gravity g
Since the rock is thrown up, g will be a negative value.
v = u+(-g)t
0 = 9-6.4g
-9 = -6.4g
6.4g = 9
divide both sides by 6.4
6.4g/6.4 = 9/6.4
g = 1.40625m/s²
Hence the acceleration due to gravity on the planet is 1.40625m/s²
Answer:
1.95 kg
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
0 = (74.9) (-0.215) + m (8.25)
m = 1.95