I'll bite:
-- Since the sled's mass is 'm', its weight is 'mg'.
-- Since the coefficient of kinetic friction is μk, the force acting opposite to the direction it's sliding is (μk) times (mg) .
-- If the pulling force is constant 'F', then the horizontal forces on the sled
are 'F' forward and (μk · mg) backwards.
-- The net force on the sled is (F - μk·mg).
(I regret the visual appearance that's beginning to emerge,
but let's forge onward.)
-- The sled's horizontal acceleration is (net force) / (mass) = (F - μk·mg) / m.
This could be simplified, but let's not just yet.
-- Starting from rest, the sled moves a distance 's' during time 't'.
We know that s = 1/2 a t² , and we know what 'a' is. So we can write
s = (1/2 t²) (F - μk·mg) / m .
Now we have the distance, and the constant force.
The total work is (Force x distance), and the power is (Work / time).
Let's put it together and see how ugly it becomes. Maybe THEN
it can be simplified.
Work = (Force x distance) = F x (1/2 t²) (F - μk·mg) / m
Power = (Work / time) = <em>F (t/2) (F - μk·mg) / m </em>
Unless I can come up with something a lot simpler, that's the answer.
To simplify and beautify, make the partial fractions out of the
2nd parentheses:
<em> F (t/2) (F/m - μk·m)</em>
I think that's about as far as you can go. I tried some other presentations,
and didn't find anything that's much simpler.
Five points,ehhh ?
Answer:
The second ball hits at the same time.
Distance travelled is 65 meters
Explanation:
Answer:
this is the answer according to my calculations
Explanation:
0.001.9
The applicable equation:
P = F/A
P = pressure
F = Force or weight
A = surface area
Pressure on each cylinder = (W/n)/A
Where n = number of cylinders. Additionally, pressure in the reservoir is equivalent to the pressure in each cylinder.
Net pressure = 75 - 14.7 = 60.3 psi
Therefore,
60.3 = (W/n)/A = (450/n)/(πD^2/4) = (450/n)/(π*1.5^2/4) = (450/n)/(1.7671)
60.3*1.7671 = 450/n
106.03 = 450/n
n = 450/106.3 = 4.244 ≈ 5
The number of cylinders is 5.