In the current brainly version, unfortunately you could not change your username.
The only way is to create a new account, but of course all of your points will be gone
Answer:
The acceleration of a 1000 kg car subject to a 550 N net force = 0.55 m/s^2
Explanation:
Given:
F = 550 N
m = 1000 kg
To Find:
a = ?
Solution:
So by the equation by Newton's 2nd Law of Motion,
F = m x a
550 N = 1000 kg x a
a = 550 N/ 1000 kg
a = 0.55 m/s^2
Therefore,
The acceleration of a 1000 kg car subject to a 550 N net force = 0.55 m/s^2
PLEASE MARK ME AS BRAINLIEST!!!
Answer:
new force is 6 times of the initial force.
Explanation:
Let the charges on two objects is q₁ and q₂. The electric force between charges is given by :

Objects 1 and 2 attract each other with a electrostatic force of 18.0 units
If the charge of Object 1 is doubled and the charge of object 2 is tripled, it means,
and
. New force is given by :

So, the new electrostatic force between objects will become 6 times of the initial force.
Answer:
Series circuit:
The voltage that is measured across the circuit is different.
The current measured in a series circuit remains the same at all points in the circuit.
Parallel circuit:
The current measured across each resistor varies
The voltage measured across a parallel circuit will remain the same
Explanation:
Series and parallel circuits behave differently when it comes to the circulation of current and the interaction with a potential difference.
In a series circuit, the resistances are connected end to end. As a result, the voltage that is measured across the circuit is different once resistance is encountered. However, the current measured in a series circuit remains the same at all points in the circuit.
A parallel circuit behaves in an exactly opposite manner to the series circuit. In a parallel circuit, the resistances are connected side by side. As a result of this, the current measured across each resistor varies as there are circuit branches through which electric current can flow into. On the other hand, the voltage measured across a parallel circuit will remain the same