Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
It is the mitochondria of a cell that stores energy for a quick release. <span>Mitochondria break down glucose to release the energy for cells to use. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>
Velocity (unit:m/s) of the wave is given with the formula:
v=f∧,
where f is the frequency which tells us how many waves are passing a point per second (unit: Hz) and ∧ is the wavelength, which tells us the length of those waves in metres (unit:m)
f=1/T , where T is the period of the wave.
In our case: f=1/3
∧=v/f=24m/s/1/3=24*3=72m
Answer:
sorry I don't really know :P
Explanation: