Electromagnetic wave bc I studied that early in the year
Answer:
C) 24.4°
Explanation:
let nd = 2.419 be the index of refraction of diamond and na = 1.0 be the index of refraction of air and ∅c be the critical angle.
according to Snell's Law:
sin(∅c) = na/nd
sin(∅c) = (1.0)/(2.419)
∅c = 24.4°
1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:mile
Explanation: heres a hint think aboyt the distance between your house to school
I tried to look it up but it was saying that the super climate later broke apart in the sediments have been moving into their current positions ever since