Answer:
Explanation:
We need 2 different equations for this problem: first the velocity of sound equation, then the frequency of the sound equation.
The velocity of sound is found in:
v = 331.5 + .606T
We need to find that first in order to fill it into the frequency equation which is
where v is the velocity we will find the part a, f is frequency and lambda is the wavelength. Starting with the velocity of the sound:
v = 331.5 + .606(25) and
v = 331.5 + 15 and rounding correctly using the rules for sig fig when adding:
v = 347 m/s
Filling that into the frequency equation:
and
so

If the object, ends up with a positive charge, then it is missing electrons. if it is missing electrons, then it must have been removed form the object during the rubbing process.
Hey there!
Your correct answer would be (<span>
Every mass exerts a gravitational force on every other mass.) It really doesn't matter the size in mass what so ever, gravity is stronger than mass, mass in nothing compared to mass. Therefor, gravity exert's mass on any object with any size of mass.
Your correct answer would be
. . .
</span>

<span>
Hope this helps.
~Jurgen</span>