Answer:

Explanation:
As we know that the frequency of the wave is given as

here we know that

also we know that

now we have


A Beam balance (or Beam scale) is a device to measure weight or mass. These are also known as mass scales, weight scales, mass balances, weight balances, or simply scales, balances, or balance scales. You can also use a graduated cylinder and determine the water displaced and figure out the mass of an object this way!
- if this answer is what you were looking for, don’t forget to heart and maybe if you really liked it brainliest :)
It is very difficult for an atom to accept a proton. It can only be done under very special circumstances. So A and C are both incorrect. I don't see how D is possible. The atom does lose 1 electron, but how it gets 21 is think air.
The answer is B which is exactly what happens.
The inaccurate measurements must be similar to the other two measurements (ex; 590, 589, 599), but different from the actual volume of water. (Ex; the actual volume is let say.. 100, but you measured 50, 49, 40)
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers