Answer:
The correct option is;
X, W, Y, Z
Explanation:
The parameters given are;
Spring (S), Spring Constant (N/m)
W, 24
X, 35
Y, 22
Z, 15
The equation for elastic potential energy,
, is 
The above equation can also be written as 
Where:
k = The spring constant in (N/m)
x = The spring extension
Therefore, since the elastic potential energy,
, of the spring is directly proportional to the spring constant, k, we have the springs with higher spring constant will have higher elastic potential energy,
, therefore the correct order is as follows;
X > W > Y > Z
Evaporation and straining.and idk the other two
Answer:
0.0702J/g°C the specific heat capacity of the metal.
Explanation:m

where,
Q = heat absorbed by metal = 186.75 J
= Mass of metal= 19 g
= Initial temperature of metal = 
=Final temperature of metal = 
= specific heat of metal= ?



0.0702J/g°C the specific heat capacity of the metal.
Onization energy is the energy required to lose an electron and form an ion. The stronger is the attraction of the atom and the electron the higher the ionization energy, and the weaker is the attraction of the atom and the electron the higher the ionization energy. This leads to a clear trend in the periodic table. Given that the larger the atom the weaker the attraction of the atom to the valence electrons, the easier they will be released, and the lower the ionization energy. This is, as you go downward in a group, the ionization energy decreases. So, the element at the top of the group will exhibit the largest ionization energy. <span>Therefore, the answer is that of the four elements of group 7A, fluorine will have the largest first ionization energy.</span>