Answer: Power is 200 W
Explanation: Power P = work done / time used.
P = W/t = mgh/t = 154 kg · 9.81 m/s²· 4 m / 30 s = 201 W
The important point here is that volumetric flow rate in the pump and the pipe is the same.
Q = AV, where Q = Volumetric flow rate, A = Cross sectional area, V = velocity
Q (pump) = (π*15^2)/4*2 = 353.43 cm^3/s
Q (pipe) = (π*(3/10)^2)/4*V = 0.071V
Q (pump) = Q (pipe)
0.071V = 353.43 => V = 5000 cm/s
Therefore, the flow of water in the pipe is 5000 cm/s.
Answer:
F = Force (Measured in Newtons, N), m = Mass (Measured in kilograms, kg), and a = acceleration (Measured in metres per second squared, 
Explanation:
This is Newton's Second Law!
Hope this helps!
PLS mark as brainliest, hope this helps!
Because mass and distance determine gravity, so the more mass you have, the more gravity.
Answer:
The magnetic field in the System is 0.095T
Explanation:
To solve the exercise it is necessary to use the concepts related to Faraday's Law, magnetic flux and ohm's law.
By Faraday's law we know that

Where,
electromotive force
N = Number of loops
B = Magnetic field
A = Area
t= Time
For Ohm's law we now that,
V = IR
Where,
I = Current
R = Resistance
V = Voltage (Same that the electromotive force at this case)
In this system we have that the resistance in series of coil and charge measuring device is given by,

And that the current can be expressed as function of charge and time, then

Equation Faraday's law and Ohm's law we have,



Re-arrange for Magnetic Field B, we have

Our values are given as,





Replacing,


Therefore the magnetic field in the System is 0.095T