Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Storing music digitally requires less storage room than analog records or tapes. Digital music is easier to copy and the copies are the same as the original. The quality of the signal does not degrade over long periods of time.
Answer:
a = 3,0 m/s²
Explanation:
En este ejercicio se pide calcular la aceleracion del cuerpo, usemos las ecuaciones de cinematica en una dimensión.
v= v₀ + a t
como el corredor parte del reposo si velocidad inicial es cero
v = at
a = v/t
calculemos
a = 12 /4,0
a = 3,0 m/s²
Answer:
5. -24 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
mathematically,
a = dv/dt ............................ Equation 1
Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.
But
v = dx(t)/dt
Where,
x(t) = 27t-4.0t³...................... Equation 2
Therefore, differentiating equation 2 with respect to time.
v = dx(t)/dt = 27-12t²............. Equation 3.
Also differentiating equation 3 with respect to time,
a = dv/dt = -24t
a = -24t .................... Equation 4
from the question,
At the end of 1.0 s,
a = -24(1)
a = -24 m/s².
Thus the acceleration = -24 m/s²
The right option is 5. -24 m/s²