Answer:
Mass of the body will be = 6 kg
Explanation:
Given:
Mass of an object = 6 kg
Acceleration due to gravity of the planet = 10 
To find the mass of the body on that planet.
Solution:
Mass of the body is defined as the total amount of matter contained in the body.
Thus, mass of a body will always remain constant irrespective of the acceleration due to gravity. This is because it is an independent quantity and does not vary with acceleration due to gravity.
<em>It is the weight of the body that changes with the change in the acceleration due to gravity as it is given by:</em>

where
represents mass of the body and
represents the accelration due to gravity.
Hence, the mass of the given body will remain = 6 kg.
Answer:
Matthias Schleidan
Explanation:
because Matthias Schleiden found that all plants are composed of cells, and communicated the finding to Schwann, who had found similar structures in the cells. Other researchers confirmed the similarity, as explained in his book, where he concluded, "All living things are composed of cells and cell products.
This became the cell theory.
I learn that in my old school.
Answer:
A = -14.87 i ^ + 8.42 j ^ + 0 k ^
B = -25.41 i ^ -12.0 j ^ + 0 k ^
Explanation:
For this exercise let's use trigonometry by decomposing to vectors
vector A
module 17.1 with an angle of 150.5 counterclockwise.
Sin 150.5 =
/ A
cos 150.5 = Ax / A
A_{y} = A sin 150.5 = 17.1 sin 150.5
Aₓ = A cos 1505 = 172 cos 150.5
A_{y} = 8,420
Aₓ = -14.870
the vector is
A = -14.87 i ^ + 8.42 j ^ + 0 k ^
Vector B
= 28.1 sin 205.3
Bₓ = 28.1 cos 205.3
B_{y} = -12.009
Bₓ = -25.405
the vector is
B = -25.41 i ^ -12.0 j ^ + 0 k ^
The Answer is A, the iris dilates the pupil.