Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
And the correct answer is A) on the surface of the moon; because Newton's second law provides the explanation for the behavior of objects upon which the forces do not balance. The law states that unbalanced forces cause objects to accelerate with an acceleration that is directly proportional to the net force and inversely proportional to the mass.
So the correct answer is A) on the surface of the moon
Hope I helped.
Answer:
72mph/sec
Explanation:
The car goes from 100mph to 316mph in three seconds. Meaning it increases its speed by (316 - 100)mph in three seconds. That is 216 mph increase in three seconds. So, we divide the speed increase by the amount of time the increase occurred over. We get:
216mph / 3sec = 72mph/sec, our final answer
Hope it made sense. I would appreciate Brainliest, but no worries.
Answer: 
Explanation:
IMA stands for Ideal Mechanical advantage.
The IMA of pulley system can be defined as the ratio of output force to input force.
From the given pulley system,
The input force = 
The output force = 
Hence, IMA of the given pulley system,

"Electrostatic forces are attractive or repulsive forces between particles that are caused by their electric charges."
The relationship between wavelength

, frequency f and speed of light c for an electromagnetic wave is

Using the data of the problem, we find