The coordinates of the vertex that A maps to after Daniel's reflections are (3, 4) and the coordinates of the vertex that A maps to after Zachary's reflections are (3, 2)
<h3>How to determine the coordinates of the vertex that A maps to after the two reflections?</h3>
From the given figure, the coordinate of the vertex A is represented as:
A = (-5, 2)
<u>The coordinates of the vertex that A maps to after Daniel's reflections</u>
The rule of reflection across the line x = -1 is
(x, y) ⇒ (-x - 2, y)
So, we have:
A' = (5 - 2, 2)
Evaluate the difference
A' = (3, 2)
The rule of reflection across the line y = 2 is
(x, y) ⇒ (x, -y + 4)
So, we have:
A'' = (3, -2 + 4)
Evaluate the difference
A'' = (3, 4)
Hence, the coordinates of the vertex that A maps to after Daniel's reflections are (3, 4)
<u>The coordinates of the vertex that A maps to after Zachary's reflections</u>
The rule of reflection across the line y = 2 is
(x, y) ⇒ (x, -y + 4)
So, we have:
A' = (-5, -2 + 4)
Evaluate the difference
A' = (-5, 2)
The rule of reflection across the line x = -1 is
(x, y) ⇒ (-x - 2, y)
So, we have:
A'' = (5 - 2, 2)
Evaluate the difference
A'' = (3, 2)
Hence, the coordinates of the vertex that A maps to after Zachary's reflections are (3, 2)
Read more about reflection at:
brainly.com/question/4289712
#SPJ1
Hello,
y=2xe^x
y'=2(e^x+xe^x)=2(x+1)e^x
y''=2(e^x+(x+1)e^x)=2(x+2)e^x
x |-infinite -2 0 +infinite
e^x | ++++++++++++++++++
x+2 |------------0 +++++++++++
y'' | -----------0 +++++++++++
y''<0 if x<-2
<span>The interval on which the graph is concave down is (-infinite -2[</span>
Divide 30 by 10. 30mph/10seconds = 3mph/seconds
Answer:
y=-x/5 =3/5. that is how it is.