<span>19.992*0.9048+20.993*0.0027+21.991+0.0925 = </span><span> 20.1797 amu (C)</span>
Solution here,
Volume(V)=67.4 L
Pressure(P)=1 atm
Temperature(T)=(0+273)K=273K
Universal gas constant(R)=0.0821 L.atm.mol^-1K^-1
No. of moles(n)=?
Now,
PV=nRT
or, 1×67.4=n×0.0821×273
or, 67.4=22.4n
or, n=67.4/22.4
or, n=3
therefore, required no. of mole is 3.
Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:

The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.
Recycling reduces the demand for new wood is correct
Explanation:
Relation between pressure, latent heat of fusion, and change in volume is as follows.

Also, 
where,
is the difference in specific volumes.
Hence, 
As,
= 22.0 J/mol K
And,
...... (1)
where,
= density of water
= density of ice
M = molar mass of water =
Therefore, using formula in equation (1) we will calculate the volume of fusion as follows.
=
=
Therefore, calculate the required pressure as follows.

=
or, = 145 bar/K
Hence, for change of 1 degree pressure the decrease is 145 bar and for 4.7 degree change dP =
= 681.5 bar
Thus, we can conclude that pressure should be increased by 681.5 bar to cause 4.7 degree change in melting point.