True because a organism that sticks out and can’t hide would be easy pray
Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
Answer:
Temperature = 44.02°C
Explanation:
Insulated container indicates no heat loss to the surroundings.
The specific heat capacity of a substance is a physical property of matter. It is defined as the amount of heat that is to be supplied to a unit mass of the material to produce a unit change in its temperature.
The SI unit of specific heat is joule per kelvin and kilogram, J/(K kg).
Now,
Specific heat for water is 4.1813 Jg⁻¹K⁻¹.
Latent heat of vaporization of water is 2257 Jg⁻¹.
Energy lost by steam in it's process of conversion to water, is the energy acquired by water resulting in an increase in it's temperature.

Q= Heat transferred
m= mass of the substance
T= temperature
Also,

L= Latent heat of fusion/ vaporization ( during phase change)
Now applying the above equations to the problem:


Temperature = 44.02°C
Answers:
A) Li
B) Ar
C) Br
D) Ne
E) B