Answer:
Pressure = 1.14 atm
Explanation:
Hello,
This question requires us to calculate the final pressure of the bottle after thermal equilibrium.
This is a direct application of pressure law which states that in a fixed mass of gas, the pressure of a given gas is directly proportional to its temperature, provided that volume remains constant.
Mathematically, what this implies is
P = kT k = P / T
P1 / T1 = P2 / T2 = P3 / T3 =........= Pn / Tn
P1 / T1 = P2 / T2
P1 = 1.0atm
T1 = -15°C = (-15 + 273.15)K = 258.15K
P2 = ?
T2 = 21.5°C = (21.5 + 273.15)K = 294.65K
P1 / T1 = P2 / T2
P2 = (P1 × T2) / T1
P2 = (1.0 × 294.65) / 258.15
P2 = 1.14atm
The pressure of the gas after attaining equilibrium is 1.14atm
1) <u>Stereo-selective (or enantioselective)</u> reactions form predominately or exclusively one enantiomer.
2) Epoxidation is the addition of a single oxygen atom to an alkene to form an epoxide.
3) <u>Hydrogenation (or reduction)</u> of an alkene forms an alkane by addition of H₂.
4) <u>Dihydroxylation</u> is the addition of two hydroxy groups to a double forming, a 1,2-diol or glycol.
5) <u>oxidative</u> cleavage of an alkene breaks both the σ and π bonds of the double bond to form two carbonyl groups.
6) <u>Regioselective</u> reactions form predominately or exclusively one constitutional isomer.
7) <u>Syn</u> dihydroxylation results when an alkene is treated KMnO4 or OsO4, where each reagent adds two oxygen atoms to the same side of the double bond.
Answer: An oxygen atom in heavy water has an extra neutron. A hydrogen atom in heavy water has an extra proton.
Explanation:
Answer:
The periodic table of elements arranges all of the known chemical elements in an informative array. Elements are arranged from left to right and top to bottom in order of increasing atomic number. Order generally coincides with increasing atomic mass. ... For instance, all the group 18 elements are inert gases.
Explanation: