Ca(NO3)2 -------> Ca²⁺ +2NO3⁻
M(Ca(NO3)2)= M(Ca) + M(N) + 6M(O)= 40.0 +14.0 +6*16.0 = 150 g/mol
15.0 g Ca(NO3)2 * 1mol/150 g = 0. 100 mol Ca(NO3)2
Ca(NO3)2 -------> Ca²⁺ +2NO3⁻
1 mol 2 mol
0.100 mol 0.200 mol
We have 0.2 mol NO3⁻ in 300. mL=0.300 L of solution,
so
0.200 mol NO3⁻ / 0.300 L solution ≈ 0.667 mol NO3⁻ /L solution = 0.667 M
Concentration of NO3⁻ is 0.667 M.
<span>. increase distance , increase force.</span>
Answer:
not the best but that is alright
Explanation:
how is your day :)
After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4