I think you forgot to give the options along with the question. I am answering the question based on my knowledge and research. It is <span>possible to tell if objects in space are moving closer to us or farther away based on several procedures like parallax and standard candles. I hope the answer has come to your help.</span>
You are LOVED and a Child of JESUS come back he has open arms God bless
Answer:
0.0002 C.
Explanation:
Charge: This can be defined as the ratio of current to time flowing in a circuit. The S.I unit of charge is Coulombs (C)
Mathematically, charge can be expressed as
Q = CV ................................. Equation 1
Where Q = amount of charge, C = capacitance of the capacitor, V = potential difference across the plates.
Given: C = 2.0-μF = 2×10⁻⁶ F, V = 100 V.
Substitute into equation 1
Q = 2×10⁻⁶× 100
Q = 2×10⁻⁴ C
Q = 0.0002 C.
The amount of charge accumulated = 0.0002 C
The energy required by the excitation of the line is:
ΔE = hν = hc / λ
where:
ΔE = energy difference
h = Planck constant
ν = line frequency
c = speed of light
λ = line wavelength
The energy difference must be supplied by the electron, supposing it transfers all its kinetic energy to excite the line:

Therefore,

And solving for v we get:

Plugging in numbers (after trasforing into the correct SI units of measurement):

=9.4 · 10⁵ m/s
Hence, the electron must have a speed of
9.4 · 10<span>
⁵ m/s in order to excite the <span>492nm</span> line.</span>