Answer:
F = 1.047 10⁻² N
Explanation:
Let's use kinematics to find the angular acceleration
w = w₀ + α t
as for rest w₀ = 0
w = α t
α = w / t
let's reduce the magnitudes to the SI system
w = 1000 rev / min (2π rad/ 1 rev) (1 min/ 60s) = 104.72 rad / s
m = 1.00 g (1 kg / 1000 g) = 1,000 10⁻³ kg
r = 10.0 cm (1 m / 100 cm) = 0.100 m
let's calculate
α = 104.72 / 1
α = 104.72 rad / s²
angular and linear variables are related
a = α r
a = 104.72 0.100
a = 10.47 m / s²
finally we substitute in Newton's second law
F = 1 10⁻³ 10.47
F = 1.047 10⁻² N
Answer:
-5.8868501529 m/s² or -5.8868501529g
0.118909090909 s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Dividing by g
The acceleration is -5.8868501529 m/s² or -5.8868501529g
The time taken is 0.118909090909 s
9. Compounds can form from two nonmetals by sharing their electrons in a
C) covalent
11. An atom that has an excess positive or negative electrical charge caused by the loss or addition of an electron is called a(n) ______.
B) ion
5 is either A or C
Answer:
776.6 w
1.04 hp
Explanation:
given:
Mass, m = 190kg
height change, h = 25m
time elapsed, t = 60 s
acceleration due to gravity, g = 9.81 m/s²
Potential energy required raising 190 kg of water to a height of 25m
= mgh
= 190 x 9.81 x 25
= 46,597.5 J
Power required in 60 s
= Energy required ÷ time elapsed
= 46,597.5 ÷ 60
= 776.6 Watts (Use conversion 1 W = 0.00134102 hp)
= 776.6 w x 0.00134102 hp/w
= 1.04 hp