Answer:
675m
Explanation:
Given parameters:
Initial velocity = 0m/s
Acceleration = 6m/s²
Time = 15s
Unknown:
Distance traveled by the body = ?
Solution:
To solve this problem; we use the expression;
S = ut +
at²
Where u is the initial velocity
t is the time
a is the temperature
Insert the parameters and solve;
S = 0 x 15 +
x 6 x 15²
S = 675m
If the sphere is positively charged, the positive rod is repelled by the sphere while the negative rod is attracted by the sphere.
<h3>What is an electrical charge?</h3>
An electrical charge can be positive or negative. From the laws of electrostatics, unlike charges attract while like charges repel. As such the effect observed when the rods are individually brought near the sphere will decide the charge on the sphere.
If the sphere is neutral, there is no effect observed when each rod is brought near the sphere. If the sphere is positively charged, the positive rod is repelled by the sphere while the negative rod is attracted by the sphere.
Learn more about electrostatics: brainly.com/question/9774180
Answer:
When two spheres, each with charge Q, are positioned a distance Rapart, they are attracted to ... doubled, the electric-force between the two spheres
Answer:
Electromagnetic waves
Explanation:
Electromagnetic waves are waves that consist of oscillating electric and magnetic fields, that oscillate perpendicularly to each other and perpendicularly to the direction of propagation of the wave (for such a reason, these waves are also called transverse waves).
Electromagnetic waves always travel in a vacuum at the same speed, called speed of light:

and they are classified into 7 different types, according to their frequency. From lowest to highest frequency, we have:
Radio waves
Microwaves
Infrared
Visible light
Ultraviolet
X-rays
Gamma rays
Therefore, gamma rays, x-rays, visible light and radio waves are all types of electromagnetic waves with different frequencies.
Answer:
8.46E+1
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = 39 C
Charge 2 (q₂) = –53 C
Force (F) of attraction = 26×10⁸ N
Electrical constant K) = 9×10⁹ Nm²/C²
Distance apart (r) =?
The distance between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
26×10⁸ = 9×10⁹ × 39 × 53 / r²
26×10⁸ = 1.8603×10¹³ / r²
Cross multiply
26×10⁸ × r² = 1.8603×10¹³
Divide both side by 26×10⁸
r² = 1.8603×10¹³ / 26×10⁸
r² = 7155
Take the square root of both side
r = √7155
r = 84.6 m
r = 8.46E+1 m