Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
He crawled.
Explanation: He crawled with the strength he gained from a leaf.
Answer:
move the decimal 6 places to the left.
Explanation:
um I assume you meant to say area m^3
The term that describes the amount of energy transported past a given area of the medium per unit time would be "intensity." In addition, the formula for computing intensity would be:
Intensity = Energy / (Time * Area)
It can be implied that the wave would be more intense when its energy transfer rate gets increased and vibration amplitudes also increases.