Answer:
$ 0.17
Explanation:
From the question given above, the following data were obtained:
Power (P) = 90 Watts
Time (t) = 1 day
Cost per KWh = $ 0.08
Cost of operation =?
Next, we shall convert 90 W to KW. This can be obtained as follow:
1000 W = 1 KW
Therefore,
90 W = 90 W × 1 KW / 1000 W
90 W = 0.09 KW
Next, we shall express 1 day in hour. This is shown below:
1 day = 24 hours
Next, we shall determine the energy consumption. This can be obtained as follow:
Power (P) = 0.09 KW
Time (t) = 24 h
Energy (E) =?
E = Pt
E = 0.09 × 24
E = 2.16 KWh
Finally, we shall determine the cost of operation. This can be obtained as follow:
Energy (E) = 2.16 KWh
Cost per KWh = $ 0.08
Cost of operation =?
Cost of operation = Energy × Cost per KWh
Cost of operation = 2.16 × 0.08
Cost of operation = $ 0.17
Thus, the cost of operating the light bulb for one day is $ 0.17
From a balistics pendulum as an example, which is probably where you are at...
Triangles, L = 12m, x_0 = 1.6, we need to find the angle (theta)
sin (theta) = 1.6/12 = 0.1333....
theta = ArcSin(0.1333...) = 0.1337 rad
Then, this is the height that the mass vertically raises in it's arc
y_2 = L-L*cos(theta) = 0.107 m
use y_2 in a kinematic swing...
<span><span>v=sqrt(<span><span>2g<span>y_2)</span></span></span>=1.45m/s</span></span>
Explanation:
because the boy has larger surface area due to which he offers the larger air resistance which decreases the acceleration so, he will fall towards the earth's surface approximately with constant velocity.
Answer:
The steps are made to overcome the negative effect of friction or to increase the friction in the mud.
Explanation:
The following step can be taken when the 4 wheels of our 4 wheeler stuck in the mud are:
(a) First put some sand or rock near the tires to increase the friction to overcome the slipping of tires.
(b) Try to reverse the car and stop and will try to accelerate in the forward direction.
(c) Use the rope, by which one end can be tie to the tree another to the car and then accelerate.
(d) Put some wooden blocks in between the tires which can help.
In the single-slit experiment, the displacement of the minima of the diffraction pattern on the screen is given by

where
n is the order of the minimum
y is the displacement of the nth-minimum from the center of the diffraction pattern

is the light's wavelength
D is the distance of the screen from the slit
a is the width of the slit
In our problem,



And the distance of the first minimum (n=1) from the center of the pattern is

The problem asks for the width of the pattern's central maximum. This will be equal to the distance between the first minimum on one side and the first minimum on the other side, so it will be equal to twice the distance we just found: