Refer to the diagram shown below.
Because ACFD is a parallelogram, its opposite angles are equal. Therefore
x = m∠ACF = m∠BCF = 48°
Similarly,
y = m∠CAD = m∠CFD
The sum of the angles inside a parallelogram is 360°. Therefore
48° + x + y + y = 360°
Because x = 48°,
48° + 48° + 2y = 360°
2y = 360° - 96° = 264°
y = 132°
Because ABED and FEBC are congruent, therefore
y = m∠DAB = m∠CFE = 132°
x = m∠ADE = m∠FCB = 48°
Because FEBC is a parallelogram, the opposite angles are equal. Therefore
m∠CBE = m∠CFE = y = 132°
m∠BCF = m∠BEF = x = 48°
Answer:
The measures of all angles of trapezoid FEBC are
m∠BCF = 48°
m∠BEF = 48°
m∠CBE = 132°
m∠CFE = 132°
Answer:
x = 4.75
Step-by-step explanation:
<u>(5 +X</u><u> )/3</u> = 2 - <u> X/4</u>
<h3>
<u>(5 +X</u><u> )/3</u> = 8 - X </h3><h3>5+ X = 3 (8 - X) </h3><h3> 5+ X = 24 - 3X transposing terms</h3><h3>X+ 3X= 24 -5</h3><h3> 4X = 19</h3><h3> X = 19/4 </h3><h3>X = 4.75</h3>
Answer:
the one you have marker is correct
Step-by-step explanation:
Simplifying
3a + 2b + c = 26
Solving
3a + 2b + c = 26
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '-2b' to each side of the equation.
3a + 2b + -2b + c = 26 + -2b
Combine like terms: 2b + -2b = 0
3a + 0 + c = 26 + -2b
3a + c = 26 + -2b
Add '-1c' to each side of the equation.
3a + c + -1c = 26 + -2b + -1c
Combine like terms: c + -1c = 0
3a + 0 = 26 + -2b + -1c
3a = 26 + -2b + -1c
Divide each side by '3'.
a = 8.666666667 + -0.6666666667b + -0.3333333333c
Simplifying
a = 8.666666667 + -0.6666666667b + -0.3333333333c
Answer:
-50
Step-by-step explanation: