Answer:
39 feet
Step-by-step explanation:
take the tree as AB , the distance between the man and the tree as BC, the distance between the man and the tip of the shadow CD and the point intersecting the hypotenuse CE
since CE parallel to AB we can BPT
CE/AB = CD/BD
6/32= CD/48
CD = 9 feet
since CD is feet
BC is 48-9 = 39 feet
Answer: -13/3
Step-by-step explanation: -1 5/8 -> -13/8 2 2/3-> 8/3
-13/8 x 8/3 = -104/24
= -13/3 OR -4 1/3
Answer:
a/b = c/d --> d = b*c/a
d is the forth proportional
a) d = 2*3/1 = 6
b) d = 3*4/0.5 = 24
c) d = b*5/a = 5*b/a
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5