Answer:
1)
is<u> positive.</u>
<u></u>
2) 
Explanation:
<h2><u>
Part 1:</u></h2>
<u></u>
The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.
Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e.,
is <u>positive.</u>
<u></u>
<h2><u>
Part 2:</u></h2>
<u></u>
<u>Given:</u>
- Mass of the balloon, m = 0.00275 kg.
- Charge on the balloon,

- Distance between the rod and the balloon, d = 0.0640 m.
- Acceleration due to gravity,

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.
Weight of the balloon, 
The magnitude of the electrostatic force on the balloon due to the rod is given by

is the Coulomb's constant.
For the elecric force and the weight to be balanced,

Answer:
The weight if the block is 10Newtons
Explanation:
The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.
The weight of an object is calculated as mass of the object × its acceleration due to gravity
W = mg
Give the mass of the brick to be 1kg
g is the acceleration due to gravity = 10m/s²
Weight of the object = 1 × 10
= 10kgm/s² or 10Newtons
Yes the Earth is bigger than the Moon.
The moon is one-quarter the size of Earth.
Answer:
simple, Volt =change in potential energy/Charge
the unit of energy is newton meter (Force*distance)
the unit of charge is coloumb
So, Volt/meter=newton* meter/coloumb*meter
=newton/coloumb (hence proved)
This unit is the potential drop per unit of length in a conductive wire with uniform resistance