Answer:
speed of the bullet before it hit the block is 200 m/s
Explanation:
given data
mass of block m1 = 1.2 kg
mass of bullet m2 = 50 gram = 0.05 kg
combine speed V= 8.0 m/s
to find out
speed of the bullet before it hit the block
solution
we will apply here conservation of momentum that is
m1 × v1 + m2 × v2 = M × V .............1
here m1 is mass of block and m2 is mass of bullet and v1 is initial speed of block i.e 0 and v2 is initial speed of bullet and M is combine mass of block and bullet and V is combine speed of block and bullet
put all value in equation 1
m1 × v1 + m2 × v2 = M × V
1.2 × 0 + 0.05 × v2 = ( 1.2 + 0.05 ) × 8
solve it we get
v2 = 200 m/s
so speed of the bullet before it hit the block is 200 m/s
W = 1/2k*x^2.
k = spring constant = 2500 n/m.
x = distance = 4 cm = 0.04m (convert to same units).
W = 1/2(2500)(0.04)^2 = 2J.
Answer: ZnSO4 + Li2CO3 = ZnCO3 + Li2SO4 - Chemical Equation Balancer
Equation is already balanced.
Explanation: ZnSO4 + Li2CO3 = ZnCO3 + Li2SO4
Answer:
A blackbody, or Planckian radiator, is a cavity within a heated material from which heat cannot escape. No matter what the material, the walls of the cavity exhibit a characteristic spectral emission, which is a function of its temperature.
Example:
Emission from a blackbody is temperature dependent and at high temperature, a blackbody will emit a spectrum of photon energies that span the visible range, and therefore it will appear white. The Sun is an example of a high-temperature blackbody.