Answer:
The solid sugar crystals break apart in water as the sugar dissolves, but the individual sugar particles or molecules are still present and do not change as a result of dissolving in the water. The combined mass of the sugar and water shouldn't change.
Explanation:
Answer:
100 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 400 g
Time (t) = 4 years
Half-life (t½) = 2 years
Amount remaining (N) =?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Time (t) = 4 years
Half-life (t½) = 2 years
Number of half-lives (n) =?
n = t / t½
n = 4 / 2
n = 2
Thus, 2 half-lives has elapsed.
Finally, we shall determine the amount remaining of the radioactive isotope. This can be obtained as follow:
Original amount (N₀) = 400 g
Number of half-lives (n) = 2
Amount remaining (N) =?
N = 1/2ⁿ × N₀
N = 1/2² × 400
N = 1/4 × 400
N = 0.25 × 400
N = 100 g
Thus, the amount of the radioactive isotope remaing is the 100 g.
Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
the heat of reaction for a chemical reaction
Pure substances are further broken down into elements and compounds. Mixture are physically combined structures that can be separated into their original components. A chemical substance is composed of one type of atom or molecule.