Let's see: frequency of cellular phone waves (GSM phones) is (800-1900 MHz). If we look at the table of the electromagnetic spectrum, we can see that this range is contained within the frequencies of the microwaves, which include waves in the range 300 MHz-300 GHz.
So, summarizing, the correct answer is "microwaves".
Not sure this is a physics question (probably biology).
Anyway, the correct answer is A):
"Plasticity helps us to adapt to our environment. It also generally decreases with age".
Plasticity is the ability to adapt to the environment. Since this ability is linked with brain functions, and brain functions worsen with age, then plasticity decreases with age.
P = m*v
7.5 = m*15
m = 7.5/15 = 0.5 kg
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2