1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
8

The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the engine compressor without any wo

rk or heat interactions. Calculate the velocity at the exit of a diffuser when air at 100 kPa and 30°C enters it with a velocity of 350 m/s and the exit state is 200 kPa and 90°C.
Physics
1 answer:
wariber [46]3 years ago
5 0

Explanation:

Expression for energy balance is as follows.

        \Delta E_{system} = E_{in} - E_{out}

or,          E_{in} = E_{out}

Therefore,  

         m(h_{1} \frac{v^{2}_{1}}{2}) = m (h_{2} \frac{V^{2}_{2}}{2})

          h_{1} + \frac{V^{2}_{1}}{2} = h_{2} + \frac{V^{2}_{2}}{2}

Hence, expression for exit velocity will be as follows.

           V_{2} = [V^{2}_{1} + 2(h_{1} - h_{2})^{0.5}

                      = V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}

As C_{p} for the given conditions is 1.007 kJ/kg K. Now, putting the given values into the above formula as follows.

       V_{2} = V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}                    

                  = [(350 m/s)^{2} + 2(1.007 kJ/kg K) (30 - 90) K \frac{1000 m^{2}/s^{2}}{1 kJ/kg}]^{0.5}

                 = 40.7 m/s

Thus, we can conclude that velocity at the exit of a diffuser under given conditions is 40.7 m/s.

You might be interested in
The main purpose of an air bag is to stop a passenger during a car accident in a greater amount of time than if the air bag were
Simora [160]

Answer:

a) 45571 N  

b) 22786 N

c) 4557 N

Explanation:

  • Since the goal of the airbag is helping the person to stop after the collision in a greater time, this means that the change in momentum must finish when this is just zero.
  • In other words, the change in momentum, must be equal to the initial one, but with opposite sign.

       \Delta p = - p_{o} = -m*v = -55 kg*29m/s = -1595 kgm/s (1)

  • Now, just applying the original form of  Newton's 2nd Law, we know that this change in momentum must be equal to the impulse needed to stop the person:

       \Delta p = F* \Delta t  (2)

  • So, as we know the magnitude of Δp from (1) and we have different Δt as givens, we can get the different values of F (in magnitude) required to stop the person for each one of them, as follows:

       F_{1} = \frac{\Delta p}{\Delta t_{1}} = \frac{1595kgm/s}{0.035s} = 45571 N (3)

       F_{2} = \frac{\Delta p}{\Delta t_{2}} = \frac{1595kgm/s}{0.07s} = 22786 N (4)

       F_{3} = \frac{\Delta p}{\Delta t_{3}} = \frac{1595kgm/s}{0.35s} = 4557 N (5)

4 0
3 years ago
Uma carga puntiforme de + 3,0uC é colocada em um ponto P de um campo elétrico gerado por uma partícula eletrizada com carga desc
expeople1 [14]

Responda:

1) E = 6 × 10 ^ 6NC ^ -1 2) Q = 6 × 10 ^ -5

Explicação:

Dado o seguinte:

Carga (q) = 3uC = 3 × 10 ^ -6C

Força elétrica (Fe) = 18N

Intensidade do campo elétrico (E) =?

1)

Lembre-se:

Força elétrica (Fe) = carga (q) * Intensidade do campo elétrico (E)

Fe = qE; E = Fe / q

E = 18N / (3 × 10 ^ -6C)

E = 6N / 10 ^ -6C

E = 6 × 10 ^ 6NC ^ -1

2)

Lembre-se:

E = kQ / r ^ 2

E = intensidade do campo elétrico

Q = carga de origem

r = distância de espera = 30cm = 30/100 = 0,3m

K = 9,0 × 10 ^ 9

6 × 10 ^ 6 = (9,0 × 10 ^ 9 * Q) / 0,3 ^ 2

9,0 × 10 ^ 9 * Q = 6 × 10 ^ 6 * 0,09

Q = 0,54 × 10 ^ 6 / 9,0 × 10 ^ 9

Q = 0,06 × 10 ^ (6-9)

Q = 0,06 × 10 ^ -3

Q = 6 × 10 ^ -5 = 60 × 10 ^ -6 = 60μC

7 0
3 years ago
Bettina spoke into a microphone during the school play to increase the sound of her voice so the audience could hear her speak.
grandymaker [24]
The loudness was increased by the amplifier which converted electrical energy into sound energy.
7 0
3 years ago
Read 2 more answers
A real object is 10.0 cm to the left of a thin, diverging lens having a focal length of magnitude 16.0 cm. What is the location
amm1812

Answer:

A)6.15 cm to the left of the lens

Explanation:

We can solve the problem by using the lens equation:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}

where

q is the distance of the image from the lens

f is the focal length

p is the distance of the object from the lens

In this problem, we have

f=-16.0 cm (the focal length is negative for a diverging lens)

p=10.0 cm is the distance of the object from the lens

Solvign the equation for q, we find

\frac{1}{q}=\frac{1}{-16.0 cm}-\frac{1}{10.0 cm}=-0.163 cm^{-1}

q=\frac{1}{-0.163 cm^{-1}}=-6.15 cm

And the sign (negative) means the image is on the left of the lens, because it is a virtual image, so the correct answer is

A)6.15 cm to the left of the lens

6 0
3 years ago
If temperature increases, then pressure __________.
lilavasa [31]
If the temperature increases, then pressure increases too. (T<span>he molecules in the gas move faster, exerting a greater force. This </span>increases t<span>he </span>pressure<span>.)</span>
6 0
2 years ago
Other questions:
  • The unit of length most suitable for measuring the thickness of a cell phone is a ( megameter, meter, millimeter, nanometer ) Th
    6·1 answer
  • When waves strike an object and bounce off, what has occured
    8·1 answer
  • To measure the height of a building without a ruler or tape measure, an engineer drops a rock off the top of the building and fi
    8·1 answer
  • Assume: Moving to the right is positive. A(n) 7.7 g object moving to the right at 22 cm/s makes an elastic head-on collision wit
    14·1 answer
  • The value of acceleration due to gravity (g) on Pluto is about . 0.61 meters/second2. How much will an object that weighs 250 ne
    11·1 answer
  • If an object is NOT accelerating, then one knows for sure that it is ___.
    5·1 answer
  • a car mass 1500kg traveling at a uniform velocity of 30 m/s due east .the driver applies the brake to slow down the car to a vel
    6·1 answer
  • Q.01 When charging a secondary cell, energy is stored within a dielectric material using an electric field. True or False
    8·1 answer
  • PLEASE HELP!!!
    10·1 answer
  • Which of the following best describes electromagnetic waves?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!