Answer: 44.57°C
Explanation:
The following can be deduced from the question:
Specific heat of water = 4.186 J/kg
From the question, we can infer that 625 × 4.186 joules of heat will be lost when there's a 1°C drop of water.
We then calculate the amount if degrees that it'll take to cool for 7.96 x 10⁴J. This will be:
= 7.96 × 10⁴ /(625 × 4.186)
= 79600/(625 x 4.186)
= 79600/2616.25
= 30.43°C
The final temperature will then be:
= 75.0°C - 30.43°C
= 44.57°C
Mercury,Venus,Earth and Mars
Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
Answer:
sorry
Explanation:
I dont know the anwser to that one
It loses it's fuel supply from the water and begins to weaken