The momentum of the mass expelled in the opposite direction ... the rocket-engine exhaust, or the ionized matter expelled from an ion drive.
THAT's why every propulsion engine has outlet nozzles designed with super-high-intensity math, to achieve the highest possible velocity for the mass that gets shot out the back ... so that it will carry the maximum possible momentum.
Answer:
49.3 N
Explanation:
Given that Pulling up on a rope, you lift a 4.25 kg bucket of water from a well with an acceleration of 1.80 m/s2 . What is the tension in the rope?
The weight of the bucket of water = mg.
Weight = 4.25 × 9.8
Weight = 41.65 N
The tension and the weight will be opposite in direction.
Total force = ma
T - mg = ma
Make tension T the subject of formula
T = ma + mg
T = m ( a + g )
Substitutes all the parameters into the formula
T = 4.25 ( 1.8 + 9.8 )
T = 4.25 ( 11.6 )
T = 49.3 N
Therefore, the tension in the rope is 49.3 N approximately.
This question is not about physics science.
The answer is: option <span>a. Five-year-old children have longer attention spans than three-year-old children.
It is the attention ability what let the older children to stay longer in one location instead of being moving between different activities. The younger children who cannot keep their attention long time in a same activity entertain themselves by changing activities.
</span>
Answer:
72.98 km
Explanation:
Her displacement is simply the distance from her final position to her initial position.
Now, I've drawn and attached a triangle diagram to depict this her movement.
Point O is her initial starting point.
Point A is the first point she gets to after travelling north while point B is the final point after travelling north east.
From the triangle, the displacement will be the distance OB which is denoted by x and can be solved from cosine rule.
Thus;
x² = 62² + 26² - 2(62 × 26)cos 120
x² = 4520 + 806
x² = 5326
x = √5326
x = 72.98 km