The correct answer is true
Hi there!
We can use the kinematic equation:

vf = Final velocity (? m/s)
vi = initial velocity (0 m/s, dropped from rest)
a = acceleration (due to gravity, 9.8 m/s²)
d = distance (9.8 m)
Simplify the equation to solve for vf:

Substitute in the given values:

Answer:
875 N
Explanation:
From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because
Force = mass * acceleration, while
Acceleration = velocity / time, basically
Force = mass * velocity / time.
We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.
Going by the formula I stated, we can then say that
Force = 250 * 3.5 / 1
Force = 875 N
This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N
Answer:
The electric field is directed toward the electron and has a magnitude of
.
Explanation:
An electric field is define as the surrounding of charges which exert a force on each other and this force can be attractive or repulsive depends on the charge.
In the given case electron is given and the magnitude of charge on electron is 
Electric field can be represented as,

Here, r is the distance between the point ande charge, k is the electric field constant and Q is the charge.
In the given question an electron is given so electric field will be,

As we know that electric field start from the positive charge and vanish in the negative charge.
So, here the electric field will be
and it is directed toward the electron because of negative charge on the electron.
Explanation:
If two particles are involved in an elastic collision, the velocity of the second particle after collision can be expressed as: v2f=2⋅m1(m2+m1)v1i+(m2−m1)(m2+m1)v2i v 2 f = 2 ⋅ m 1 ( m 2 + m 1 ) v 1 i + ( m 2 − m 1 ) ( m 2 + m 1 ) v 2 i .