On Earth, gravity adds 9.8 m/s to the downwsrd speed of any falling object, every second. Beginning from zero downward speed, the speed grows to (8 x 9.8) = 78.4 m/s downward after 8 sec.
Strength of the magnetic field: 20 T
Explanation:
For a conductive wire moving perpendicular to a magnetic field, the electromotive force (voltage) induced in the wire due to electromagnetic induction is given by

where
B is the strength of the magnetic field
v is the speed of the wire
L is the length of the wire
For the wire in this problem, we have:
(induced emf)
L = 0.20 m (length of the wire)
v = 3.0 m/s (speed)
Solving for B, we find the strength of the magnetic field:

Learn more about magnetic fields:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly
Answer:
Calories, however you might want to back up my answer. I havent studied this topic in a while.
Answer:
C
Explanation:
total energy = potential energy + kinetic energy
Answer:
The acceleration is 
Explanation:
Given the velocity function:

you can obtain the instantaneous acceleration "a" as its first derivative:

To determine the value of "a" when the velocity was 12m/s, you need to figure out the value for "t" when this happens. At what time t is the velocity 12m/s?

This value of t is less than the 5 seconds mentioned in the text - so that is a good sign that the formula is valid for this value. And so you can use t=3.47s in the derivative (acceleration) above: