Answer:
The torsion constant for the wire is
.
Explanation:
The angular frequency of the torsional pendulum (
), measured in radians per second, is defined by the following expression:
(1)
Where:
- Torsional constant, measured in newton-meters.
- Moment of inertia, measured in kilogram-square meters.
The angular frequency and the moment of inertia are represented by the following formulas:
(2)
(3)
Where:
- Period, measured in seconds.
- Mass of the stick, measured in kilograms.
- Length of the stick, measured in meters.
By (2) and (3), (1) is now expanded:
![\frac{2\pi}{T} = \sqrt{\frac{12\cdot \kappa}{m\cdot L^{2}} }](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Cpi%7D%7BT%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B12%5Ccdot%20%5Ckappa%7D%7Bm%5Ccdot%20L%5E%7B2%7D%7D%20%7D)
![\frac{2\pi}{T} = \frac{2}{L}\cdot \sqrt{\frac{3\cdot \kappa}{m} }](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Cpi%7D%7BT%7D%20%3D%20%5Cfrac%7B2%7D%7BL%7D%5Ccdot%20%5Csqrt%7B%5Cfrac%7B3%5Ccdot%20%5Ckappa%7D%7Bm%7D%20%7D)
![\frac{\pi\cdot L}{T} = \sqrt{\frac{3\cdot \kappa}{m} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%5Ccdot%20L%7D%7BT%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B3%5Ccdot%20%5Ckappa%7D%7Bm%7D%20%7D)
![\frac{\pi^{2}\cdot L^{2}}{T^{2}} = \frac{3\cdot \kappa}{m}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%5E%7B2%7D%5Ccdot%20L%5E%7B2%7D%7D%7BT%5E%7B2%7D%7D%20%3D%20%5Cfrac%7B3%5Ccdot%20%5Ckappa%7D%7Bm%7D)
![\kappa = \frac{\pi^{2}\cdot m\cdot L^{2}}{3\cdot T^{2}}](https://tex.z-dn.net/?f=%5Ckappa%20%3D%20%5Cfrac%7B%5Cpi%5E%7B2%7D%5Ccdot%20m%5Ccdot%20L%5E%7B2%7D%7D%7B3%5Ccdot%20T%5E%7B2%7D%7D)
If we know that
,
and
, then the torsion constant for the wire is:
![\kappa = \frac{\pi^{2}\cdot (5\,kg)\cdot (1\,m)^{2}}{3\cdot (240\,s)^{2}}](https://tex.z-dn.net/?f=%5Ckappa%20%3D%20%5Cfrac%7B%5Cpi%5E%7B2%7D%5Ccdot%20%285%5C%2Ckg%29%5Ccdot%20%281%5C%2Cm%29%5E%7B2%7D%7D%7B3%5Ccdot%20%28240%5C%2Cs%29%5E%7B2%7D%7D)
![\kappa = 2.856\times 10^{-4}\,N\cdot m](https://tex.z-dn.net/?f=%5Ckappa%20%3D%202.856%5Ctimes%2010%5E%7B-4%7D%5C%2CN%5Ccdot%20m)
The torsion constant for the wire is
.