Answer:

Explanation:
From the given information, since the molecular mass of the ion M+ is not given;
Let's assume M+ = 58.0423
So, by applying the 13th rule;
we will need to divide the mass by 13, after dividing it;
The quotient n = no. of carbon; &
The addition of the quotient (n) with the remainder r = no. of hydrogen.
So;

So;


From the given information; we have oxygen present, so since the mass of oxygen = 16, we put oxygen in the molecular formula by removing
. Also, since the mass is an even number then Nitrogen is 0.
So, we have:

Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
1. Thermochemical equation is balance stoichiometric chemical equation written with the phases of the reactants and products in the brackets along with the enthalpy change of the reaction.
The given correct thermochemical reactions are:


2. Phase change affect the value of the enthalpy change of the thermochemical equation. This is because change in phase is accompanied by change in energy. For example:


In both reaction phase of water is changing with change in energy of enthalpy of reaction.
Answer:
The average kinetic energy of a particle is proportional to the temperature in Kelvin.
Explanation:
The kinetic molecular theory states that particles of matter are in constant motion and collide frequently with each other as well as with the walls of the container.
The collisions between particles are completely elastic. The kinetic energy of the particles of a body depends on the temperature of the body since temperature is defined as a measure of the average kinetic energy of the particles of a body.
Therefore, the average kinetic energy of a particle is proportional to the temperature in Kelvin.
It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!