Answer:
1 valence - Alkali Metals: Li Lithium, Na Sodium, K Potassium
2 valence - Alkaline Earth Metals: Be Beryllium, Mg Magnesium, Ca Calcium
3 valence - Non-metals: B Boron, Al Aluminium
4 valence - Non-metals: C Carbon, Si Silicon
5 valence - Non-metals: N Nitrogen, P Phosphorus
6 valence - Non-metals: O Oxygen, S Sulfur, Se Selenium
7 valence - Halogens: F Fluorine, Cl Chlorine, Br Bromine
8 valence - Noble Gases: He Helium, Ne Neon, Ar Argon
The majority of wind turbines consist of three blades mounted to a tower made from tubular steel. There are less common varieties with two blades, or with concrete or steel lattice towers. At 100 feet or more above the ground, the tower allows the turbine to take advantage of faster wind speeds found at higher altitudes.
Turbines catch the wind's energy with their propeller-like blades, which act much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on one side of the blade. The low-pressure air pocket then pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the lift is much stronger than the wind's force against the front side of the blade, which is called drag. The combination of lift and drag causes the rotor to spin like a propeller. So therefore your answer would be A.
If this helped could you leave a brainlyest?
Answer:
1.387 moles
Explanation:
Step 1:
The balanced equation for the reaction. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
Step 2:
Determination of the number of mole of Fe in 155.321g of Fe. This can be achieved by doing the following:
Mass of Fe = 155.321g
Molar Mass of Fe = 56g/mol
Number of mole of Fe =?
Number of mole = Mass/Molar Mass
Number of mole of Fe = 155.321/56
Number of mole of Fe = 2.774 mol
Step 3:
Determination of the number of mole of rust (Fe2O3) produced. This is illustrated below:
From the balanced equation above,
4 moles of Fe produced 2 moles of Fe2O3.
Therefore, 2.774 moles of Fe will produce = (2.774 x 2)/4 = 1.387 moles of Fe2O3.
Therefore, 1.387 moles of rust (Fe2O3) is produced from the reaction