Answer:
Michaelis constant is known as km which is the substrate concentration that encourages the compound to work at half maximum velocity represented by Vmax/2. Michaelis constant is inversely related to the substrate and the affinity of the enzyme.
Induced fit model: The premise of the purported induced fit hypothesis, which expresses that the attachment or association of a substrate or some other atom to an enzyme causes an adjustment to the enzyme in order to fit or restrain its activity.
In substrate, analog Km or Michaelis constant will be high as the substrate will stay because of analogs inhibit activity.
In the transitional state, analog Km will be in the middle of the substrate and product analogs. Progress state analogs are synthetic mixes with a structure catalyzed reaction that looks like the progressing condition of a substrate atom in a compound enzyme.
In item simple thus Km is the least.
0.0013 M = product ananlog,
0.025 M=Transition state, and
0.0045 M = Substrate analog
<u>Answer:</u>
<em>Here the given material is taken and mixed with water.</em>
<u>Explanation:</u>
The amount of material and water taken are same. Hence if it is not soluble in water it should make a dense and flowy paste like material and if it is soluble in water it should this and thicker density of water should remain.
If the amount of water that we are taking is more than the material will float in water if it is not soluble and lighter than water or would sink if it is heavier than water.
Answer:
= 7.57 × 104
(scientific notation)
= 7.57e4
(scientific e notation)
= 75.7 × 103
(engineering notation)
(thousand; prefix kilo- (k))
Explanation:
Just in case this is all of them
Answer:The oxygen during photosynthesis comes from split water molecules. During photosynthesis, the plant absorbs water and carbon dioxide. After the absorption, the water molecules are disassembled and converted into sugar and oxygen.
Answer:
<em>Liquids and gases are called fluids because they can be made to flow, or move.</em>
<em> In any fluid, the molecules themselves are in constant, random motion, colliding with each other and with the walls of any container.</em><em> </em><em>So</em><em> </em><em>that</em><em> </em><em>they're</em><em> </em><em>called</em><em> </em><em>fluids</em><em>.</em>