<span>Days and nights are equal in length everywhere.(gradpoint)</span>
Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
Answer:
Technician A is right.
Explanation:
Given that,
Voltage of circuit, V = 12 volt
Current in the circuit, I = 3 A
Technician A says the electric power in this circuit is 36 watts. Technician B says the electric power in this circuit is 4 watts. We need to say that which technician is correct.
The power of any circuit is given by :


P = 36 watts
So, technician A is right. Hence, this is the required solution.
I believe the answer is A