Answer: The second force applied to the doorknob
Explanation:
The formulae for torque is simple the product of the applied force and the perpendicular distance.
The greater the perpendicular force, the greater the torque assuming a constant value of force.
Applying the force at the doorknob gives for a greater distance between the force and the turning point compared to applying the force at the midpoint of the door ( which is at a shorter distance)
Answer:it might be radiation
Explanation:
Answer:
no
Explanation:
they cannot because they contain the same amount of liquid
Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
Answer:
Explanation:
Applied force, F = 18 N
Coefficient of static friction, μs = 0.4
Coefficient of kinetic friction, μs = 0.3
θ = 27°
Let N be the normal reaction of the wall acting on the block and m be the mass of block.
Resolve the components of force F.
As the block is in the horizontal equilibrium, so
F Cos 27° = N
N = 18 Cos 27° = 16.04 N
As the block does not slide so it means that the syatic friction force acting on the block balances the downwards forces acting on the block .
The force of static friction is μs x N = 0.4 x 16.04 = 6.42 N .... (1)
The vertically downward force acting on the block is mg - F Sin 27°
= mg - 18 Sin 27° = mg - 8.172 ... (2)
Now by equating the forces from equation (1) and (2), we get
mg - 8.172 = 6.42
mg = 14.592
m x 9.8 = 14.592
m = 1.49 kg
Thus, the mass of block is 1.5 kg.