1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
11

A fisherman notices that his boat is moving up and down periodically, owing to waves on the surface of the water. It takes 2.5 s

for the boat to travel from its highest point to its lowest, a total distance of 0.62 m. The fisherman sees that the wave crests are spaced 6.0 m apart. (a) How fast are the waves traveling? (b) What is the amplitude of each wave? (c) If the total vertical distance traveled by the boat were 0.30 m but the other data remained the same, how would the answers to parts (a) and (b) be affected?
Physics
1 answer:
blondinia [14]3 years ago
8 0

Answer:

1.2 m/s

0.31 m

0.15 m

Explanation:

Time period is

T=2.5\times 2\\\Rightarrow T=5\ s

Frequency is

f=\dfrac{1}{T}\\\Rightarrow f=\dfrac{1}{5}\\\Rightarrow f=0.2\ Hz

Velocity is given by

v=f\lambda\\\Rightarrow v=0.2\times 6\\\Rightarrow v=1.2\ m/s

The waves are traveling at 1.2 m/s

Amplitude is given by

A=\dfrac{d}{2}\\\Rightarrow A=\dfrac{0.62}{2}\\\Rightarrow A=0.31\ m

Amplitude is 0.31 m

If d = 0.3 m

A=\dfrac{0.3}{2}=0.15\ m

The amplitude would be 0.15 m. The speed would remain the same.

You might be interested in
What is the definition of differentiation geology?
UkoKoshka [18]
Any process in which a mixture of materials separates out partially
5 0
3 years ago
A child pulls a sled up a snow covered hill. If the child does 504J of work on the sled while pulling the sled 23m up the hill t
zhenek [66]

Explanation:

ans is equal to 504j* 23 m* 10 ms

7 0
2 years ago
The highest energy waves have the<br> {SHORTEST}wavelength
Likurg_2 [28]

Answer:

infared rays pls give me brainiest]

8 0
2 years ago
A merry-go-round of radius R, shown in the figure, is rotating at constant angular speed. The friction in its bearings is so sma
mel-nik [20]

The angular speed of the merry-go-round reduced more as the sandbag is

placed further from the axis than increasing the mass of the sandbag.

The rank from largest to smallest angular speed is presented as follows;

[m = 10 kg, r = 0.25·R]

              {} ⇩

[m = 20 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 0.5·R]

              {} ⇩

[m = 10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 1.0·R]

Reasons:

The given combination in the question as obtained from a similar question online are;

<em>1: m = 20 kg, r = 0.25·R</em>

<em>2: m = 10 kg, r = 1.0·R</em>

<em>3: m = 10 kg, r = 0.25·R</em>

<em>4: m = 15 kg, r = 0.75·R</em>

<em>5: m = 10 kg, r = 0.5·R</em>

<em>6: m = 40 kg, r = 0.25·R</em>

According to the principle of conservation of angular momentum, we have;

I_i \cdot \omega _i = I_f \cdot \omega _f

The moment of inertia of the merry-go-round, I_m = 0.5·M·R²

Moment of inertia of the sandbag = m·r²

Therefore;

0.5·M·R²·\omega _i = (0.5·M·R² + m·r²)·\omega _f

Given that 0.5·M·R²·\omega _i is constant, as the value of  m·r² increases, the value of \omega _f decreases.

The values of m·r² for each combination are;

Combination 1: m = 20 kg, r = 0.25·R; m·r² = 1.25·R²

Combination 2: m = 10 kg, r = 1.0·R; m·r² = 10·R²

Combination 3: m = 10 kg, r = 0.25·R; m·r² = 0.625·R²

Combination 4: m = 15 kg, r = 0.75·R; m·r² = 8.4375·R²

Combination 5: m = 10 kg, r = 0.5·R; m·r² = 2.5·R²

Combination 6: m = 40 kg, r = 0.25·R; m·r² = 2.5·R²

Therefore, the rank from largest to smallest angular speed is as follows;

Combination 3 > Combination 1 > Combination 5 = Combination 6 >

Combination 2

Which gives;

[<u>m = 10 kg, r = 0.25·R</u>] > [<u>m = 20 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 0.5·R</u>] > [<u>m = </u>

<u>10 kg, r = 0.5·R</u>] = [<u>m = 40 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 1.0·R</u>].

Learn more here:

brainly.com/question/15188750

6 0
2 years ago
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
sveta [45]

Answer:

the two ice skater have the same momentum but the are in different directions.

Paula will have a greater speed than Ricardo after the push-off.

Explanation:

Given that:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

A. Which skater, if either, has the greater momentum after the push-off? Explain.

The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off

The law of conservation of momentum states that the total momentum of two  or more objects acting upon one another will not change, provided there are no external forces acting on them.

So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.

Momentum is the product of mass and velocity.

SO, from the information given:

Let represent the mass of Paula with m_{Pa} and its initial velocity with u_{Pa}

Let represent the mass of Ricardo with m_{Ri} and its initial velocity with u_{Ri}

At rest ;

their velocities will be zero, i.e

u_{Pa} = u_{Ri} = 0

The initial momentum for this process can be represented as :

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} = 0

after push off from each other then their final velocity will be v_{Pa} and v_{Ri}

The we can say their final momentum is:

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri} = 0

Using the law of conservation of momentum as states earlier.

Initial momentum = final momentum = 0

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} =  m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

Since the initial velocities are stating at rest then ; u = 0

m_{Pa}(0) + m_{Pa}(0) = m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}  = 0

m_{Pa}v_{Pa} = - m_{Ri}v_{Ri}

Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.

 B. Which skater, if either, has the greater speed after the push-off? Explain.

Given that Ricardo weighs more than Paula

So m_{Ri} > m_{Pa} ;

Then \mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}

The magnitude of their momentum which is a product of mass and velocity can now be expressed as:

m_{Pa}v_{Pa} =  m_{Ri}v_{Ri}

The ratio is

\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1

v_{Pa} >v_{Ri}

Therefore, Paula will have a greater speed than Ricardo after the push-off.

6 0
3 years ago
Other questions:
  • Biological systems use free energy based on empirical data that all organisms require a constant energy input. The first law of
    15·1 answer
  • A constant force is applied to an object, causing the object to accelerate at 10 m/s^2. What will the acceleration be if the for
    8·1 answer
  • What is an example of chemical potential energy in humans?
    15·1 answer
  • The near point (smallest distance at which an object can be seen clearly) and the far point (the largest distance at which an ob
    6·1 answer
  • 2. Harry is pushing a car down a level road at 2.0 m/s with a force of 243 N. The total force
    8·1 answer
  • A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with ne
    14·1 answer
  • What happens when you change the number of electrons in an atom
    10·1 answer
  • A racquetball strikes a wall with a speed of 30 m/s and rebounds in the opposite direction with a speed of 26 m/s. The collision
    8·1 answer
  • It's possible for a determined group of people to pull an aircraft. Drag is negligible at low speeds, and the only force impedin
    6·1 answer
  • Water enters a shower head through a pipe of radius 0.0112 m at 3.25 m/s. What is it’s volume flow rate? (Unit= m^3/s)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!