Answer: The limiting reactant is Na
Explanation:
In NaMnO₄, Mn has the highest oxidation number.
The question is incomplete, the complete question is;
Which of the following species contains manganese with the highest oxidation number?
A) Mn
B) MnF₂
C) Mn₃(PO₄)₂
D) MnCl₄
E) NaMnO₄
In order to ascertain the specie that contains manganese with the highest oxidation number, we must calculate the oxidation number of manganese in each of the species one after the other.
1) For Mn, the oxidation number of Mn is zero because the atom is uncombined.
2) For MnF₂;
Mn has an oxidation number of +2
3) For Mn₃(PO₄)₂
Mn has an oxidation number of +2
4) For MnCl₄
Mn has an oxidation number of +4
5) For NaMnO₄
Mn has an oxidation number of +7
Hence in NaMnO₄, Mn has the highest oxidation number.
Learn more: brainly.com/question/10079361
Answer:
CONNECTIONS: WAVES
There are many types of waves, such as water waves and even earthquakes. Among the many shared attributes of waves are propagation speed, frequency, and wavelength. These are always related by the expression vW=fλ. This module concentrates on EM waves, but other modules contain examples of all of these characteristics for sound waves and submicroscopic particles.
As noted before, an electromagnetic wave has a frequency and a wavelength associated with it and travels at the speed of light, or c. The relationship among these wave characteristics can be described by vW = fλ, where vW is the propagation speed of the wave, f is the frequency, and λ is the wavelength. Here vW = c, so that for all electromagnetic waves, c = fλ.
Thus, for all electromagnetic waves, the greater the frequency, the smaller the wavelength
Explanation:
helps?
if not so sry :(
Answer:
0.1 mol×L
Explanation:
Concentration= MOLES of SOLUTE / Volume of SOLUTION
So all we need to is to calculate the one quantity; Volume of SOLUTION has been specified to be 150 ml
So, MOLES of SOLUTE
x 100 x 10-L = ??mol; this was our starting solution.
And final CONCENTRATION=
0.15 . mol. 5 x 100 x 10-3L/
= 0.15 mol · L-1 150 x 10 3
=0.1 mol · L