M=70.0 g
p=0.70 g/mL
v=m/p
v=70.0/0.70=100.00 mL
Answer:
They increase the attractive forces between the solute and solvent particles.
Explanation:
The dissolution of a solute in a solvent depends on interaction between the solute and the solvent. The more the attractive force and interaction between solute and solvent, the greater the greater the rate of dissolution of the solute in the solvent.
The absence of interaction between solute and solvent molecules means that the substance can not dissolve in that particular solvent. Hence, any factor that enhances solute-solvent interaction will enhance dissolution of a solute in a particular solvent.
The pH scale for acids and bases ranges from 1 - 14. The answer is letter C. The rest of the choices do not answered the question above. There are quite a few relationships between [H+] and [OH−] ions. And because there is a large range of number between 10 to 10-15 M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, [H+ ][OH- ] = 10-14. From here we can derive the values of each concentration.
-log[H+ ] + -log[OH- ] = -log[10-14]
pH + pOH = 14
So pH = 14 – pOH and pOH = 14 –
pH
It would be B.
Answer: The empirical formula is 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of Br= 58.37 g
Mass of F = (100-58.37) = 41.63 g
Step 1 : convert given masses into moles.
Moles of Br=
Moles of F =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Br = 
For F = 
The ratio of Br: F= 1 : 3
Hence the empirical formula is 