Answer:
(a) 47.08°
(b) 47.50°
Explanation:
Angle of incidence = 78.9°
<u>For blue light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for blue light which is 1.340
n₁ is the refractive index of air which is 1
So,
Angle of refraction for blue light = sin⁻¹ 0.7323 = 47.08°.
<u>For red light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for red light which is 1.331
n₁ is the refractive index of air which is 1
So,
Angle of refraction for red light = sin⁻¹ 0.7373 = 47.50°.
Chemical energy, your welcome (:
Answer:
I will specify a value of 0.009T for the alternator’s magnetic field
Explanation:
E_peak = 14 V
d = 10cm = 0.1m, so r = 0.1/2 =0.05m
N = 250 turns
f = 1200rpm = (1200rp/m x 1m/60sec) = 20 revolutions per second
At peak performance, peak voltage is given by the equation;
E_peak = NABω
Let's make the magnetic field B the subject;
B = E_peak/(NAω)
Now we know that ω = 2πf
Thus, ω = 2π x 20 revs/s = 125.664 revs/s.
Let's convert it to the standard unit which is rad/s.
1 rev/s = 6.283 rad/s
Thus, 125.664 revs/s = 125.664 x 6.283 = 789.55 rad/s
Area (A) = πr² = π x 0.05² = 0.007854 m²
Thus, plugging in the relevant values to get;
B = 14/[(250 x 0.007854 x 789.55)] = 0.009T
Answer:
Crest is the highest point that a wave reaches and… Trough the lowest point that a wave reaches............Transverse waves are waves whose particles vibrate at right angles to the direction of wave travel e.g water wave. .....,.......longitudinal I think it's not "longitudin" are waves whose particles vibrate in a direction parallel to the direction of wave travel e.g sound wave