Answer:

Explanation:
First, we write the equations of motion for each axis. Since the crate is sliding with constant speed, its acceleration is zero. Then, we have:

Where T is the tension in the rope, F is the force exerted by the first worker, f_k is the frictional force, N is the normal force and mg is the weight of the crate.
Since
and
, we can rewrite the first equation as:

Now, we solve for
and calculate it:

This means that the crate's coefficient of kinetic friction on the floor is 0.18.
B) Weather changes day to day, while climate changes region to region.
Climate is the weather in a certain area. It's usually the average weather over a long period of time
Weather is in shorter terms then climate
Hope this helped!
~Just a girl in love with Shawn Mendes
Streams carry sediment, like pebbles, in their flows. The pebbles can be in a variety of locations in the flow, depending on it's size, the balance between the upwards velocity on the pebble (drag and lift forces), and it's settling velocity.
Answer:
a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards
Explanation:
The forces on the athlete are
a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,
therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards
b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles
c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.
The first law states that the internal energy change of that system is given by Q − W . Since added heat increases the internal energy of a system, Q is positive when added to the system and negative when removed from the system.