<span>Conductance gives a more accurate method to determine the salt concentration of a solution.Conductivity would be used with conductors such as metals that include copper and silver.Conductivity is a measure of water's capability to pass electrical flow. This ability is directly related to the concentration of ions in the water. These conductive ions come from dissolved salts and inorganic materials such as alkalis, chlorides, sulfides and carbonate compounds</span>
Answer: Lithium
Explanation: The balanced chemical equation is:

It can be seen, 4 moles of lithium combines with 1 mole of oxygen gas to produce 2 moles of lithium oxide.
Thus 8.4 moles of lithium combines with=
of oxygen gas to produce 4.2 moles of lithium oxide.
As, Lithium limits the formation of product, it is the limiting reagent and Oxygen gas is present in excess, it is called the excess reagent. (4.6-2.1)=2.5 moles of oxygen gas are present in excess.
Answer:
One of each
Explanation:
Be is in Group 2, so it loses its two valence electrons in a reaction to form Be²⁺ ions.
Carbonate ion has the formula CO₃²⁻.
We can use the criss-cross method to work out the formula of beryllium carbonate.
The steps are
Write the symbols of the anion and cation.
Criss-cross the numbers of the charges to become the subscripts of the other ion.
Write the formula with the new subscripts.
Divide the subscripts by their highest common factor.
Omit all subscripts that are 1.
When you use this method with Be²⁺ and CO₃²⁻, you might be tempted to write the formula for the beryllium carbonate as Be₂(CO₃)₂
However, you can divide the subscripts by their largest common factor (2).
This gives you the formula Be₁(CO₃)₁.
We omit subscripts that are 1, so the correct formula is
BeCO₃
There is one Be²⁺ ion and one CO₃²⁻ ion in a formula unit of beryllium carbonate.
BB = donut body
Bb= donut body
bb= bacon body
(The punnett square is wrong because both parents are hybrid)