Answer:
Explanation:
This is a limiting reactant problem.
Mg(s)
+
2HCl(aq)
→
MgCl
2
(
aq
)
+ H
2
(
g
)
Determine Moles of Magnesium
Divide the given mass of magnesium by its molar mass (atomic weight on periodic table in g/mol).
4.86
g Mg
×
1
mol Mg
24.3050
g Mg
=
0.200 mol Mg
Determine Moles of 2M Hydrochloric Acid
Convert
100 cm
3
to
100 mL
and then to
0.1 L
.
1 dm
3
=
1 L
Convert
2.00 mol/dm
3
to
2.00 mol/L
Multiply
0.1
L
times
2.00 mol/L
.
100
cm
3
×
1
mL
1
cm
3
×
1
L
1000
mL
=
0.1 L HCl
2.00 mol/dm
3
=
2.00 mol/L
0.1
L
×
2.00
mol
1
L
=
0.200 mol HCl
Multiply the moles of each reactant times the appropriate mole ratio from the balanced equation. Then multiply times the molar mass of hydrogen gas,
2.01588 g/mol
0.200
mol Mg
×
1
mol H
2
1
mol Mg
×
2.01588
g H
2
1
mol H
2
=
0.403 g H
2
0.200
mol HCl
×
1
mol H
2
2
mol HCl
×
2.01588
g H
2
1
mol H
2
=
0.202 g H
2
The limiting reactant is
HCl
, which will produce
0.202 g H
2
under the stated conditions.
pls mark as brainliest ans
Answer:
[C₆H₁₂O₆] = 0.139 M
Explanation:
Molarity si defined as a sort of concentration. It indicates the moles of solute that are contained in 1 L of solution.
We can also say, that molarity are the mmoles of solute contained in 1 mL of solution.
For this case, the solute is sugar (glucose). Let's determine M (mmol/mL)
(3.95 g . 1mol / 180g) . (1000 mmol / 1mol) / 158 mL
We determine moles, we convert them to mmoles, we divide by mL
M = 0.139 M
Moles = 3.95 g . 1mol / 180g → 0.0219 mol
We convert mL to L → 158 mL . 1L/1000mL = 0.158L
M = 0.0219 mol / 0.158L = 0.139 M
<u>Answer:</u> The amount of energy absorbed by water is 5390 Calories
<u>Explanation:</u>
To calculate the amount of heat absorbed at normal boiling point, we use the equation:

where,
q = amount of heat absorbed = ?
m = mass of water = 10 grams
= latent heat of vaporization = 539 Cal/g
Putting values in above equation, we get:

Hence, the amount of energy absorbed by water is 5390 Calories