Answer is: D. 6.02 x 1023.
Because this is Avogadro constant<span> (the number of </span>constituent particles, in this example atoms of gold<span> that are contained in the </span>amount of substance<span> given by one </span>mole). <span>The </span>mole<span> is the </span>unit of measurement<span> for </span>amount of substance, t<span>he mole is an </span>SI base unit<span>, with the unit symbol </span>mol<span>.</span>
Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)
Answer:
it is the primary electricity in solid. they also make up an atom.
Explanation:
i hope this helps. please make brainiest
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>