<em>S</em><u><em>equoia trees</em></u> are the largest thing in the world or planet
thanx
<u>h</u><u><em>ope it helps you mark as brainlest</em></u>
'cause many alpha-particle goes without any deflection........
Answer:
B. temperature decreases as altitude increases.
Explanation:
Just like in the lower reaches of the atmosphere, the troposphere, in the mesosphere, temperature decreases as altitude increases.
The mesosphere is the third layer of the atmosphere just above the stratosphere.
- It begins at the top of the stratosphere and ends at the mesopause where the thermosphere begins.
- The mesosphere is often referred to as the middle layer.
With increasing height, the temperature of the mesosphere decreases significantly. The top of the mesosphere is one of the coldest part of the earth atmosphere. This is as a result of increasing atmospheric cooling by carbon dioxide in this region of the atmosphere.
Answer:
Mass = 90.28 g
Explanation:
Given data:
Mass of Ca(OH)₂ = ?
Volume of solution= 1.5 L
Molarity of solution = 0.81 M
Solution:
First of all we will calculate number of moles.
Molarity = number of moles / volume in L
by putting values,
0.81 M = Number of moles / 1.5 L
Number of moles = 0.81 M × 1.5 L
Number of moles = 1.22 mol
Mass of Ca(OH)₂ in gram:
Mass = number of moles × molar mass
Mass = 1.22 mol × 74.09 g/mol
Mass = 90.28 g
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!