<u>Answer:</u> The correct answer is 1.18 g.
<u>Explanation:</u>
We are given a chemical equation:

We know that at STP conditions:
22.4L of volume is occupied by 1 mole of a gas.
So, 2.21L of carbon dioxide is occupied by =
of carbon dioxide gas.
By Stoichiometry of the above reaction:
1 mole of carbon dioxide gas is produced by 1 mole of carbon
So, 0.0986 moles of carbon dioxide is produced by =
of carbon.
Now, to calculate the mass of carbon, we use the equation:

Moles of carbon = 0.0986 mol
Molar mass of carbon = 12 g/mol
Putting values in above equation, we get:

Hence, the correct answer is 1.18 g.
Intensity has no affect on whether or not the photoelectric effect occurs. The determining property is frequency and since frequency and wavelength are inversely proportional, wavelength matters as well. If a frequency of light can't cause the photoelectric effect to happen, no matter what the intensity is, the light can't make it happen.
I hope this helps. Let me know in the comments if anything is unclear.
I believe the answer is C.
Energy required to vaporize : 32.3 kJ
<h3>Further explanation
</h3>
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
Mass of water = 14.27 g
Latent heat of vaporization
( boiling point of 100 ºC) : 2260 J/g
Energy required :
