Answer:
0.00471 grams H₂O
Explanation:
To determine the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat capacity (J/g°C)
-----> ΔT = temperature change (°C)
The specific heat capacity of water is 4182 J/g°C. You can plug the given values into the equation and simplify to isolate "c".
Q = 0.709 J c = 4182 J/g°C
m = ? g ΔT = 0.036 °C
Q = mcΔT <----- Equation
0.709 J = m(4182 J/g°C)(0.036 °C) <----- Insert values
0.709 J = m(150.552) <----- Multiply 4182 and 0.036
0.00471 = m <----- Divide both sides by 150.552
protons, neutrons, and electrons.
The conversion of volume to moles at STP is 1 mole.
The ideal gas equation is given as :
P V = n R T
where,
P = pressure of the gas
V = volume of the gas
n = ?
R = constant = 0.823 atm L / mol K
T = temperature
At STP , the pressure is 1 atm and the temperature is 273.15 K, the volume At STP is 22.4 L.
moles , n = P V / R T
n = ( 1 × 22.4 ) / (0.0823 × 273.15)
n = 1 mole
Thus, at STP , the number of moles is 1 mol.
To learn more about moles here
brainly.com/question/8429153
#SPJ4
Answer is D. The periodic table rows are arranged by increasing atomic number. The atomic number is decided by how many protons they have.
I think that the correct answer is D- gets half from each parent