Brownian motion<span> or pedesis is the </span>random motion<span> of particles suspended in a fluid </span>
Answer:
V_inside = 36 V
Explanation:
<u>Given </u>
We are given a sphere with a positive charge q with radius R = 0.400 m Also, the potential due to this charge at distance r = 1.20 m is V = 24.0 V.
<u>Required</u>
We are asked to calculate the potential at the centre of the sphere
<u>Solution</u>
The potential energy due to the sphere is given by equation
V = (1/4*π*∈o) × (q/r) (1)
Where r is the distance where the potential is measured, it may be inside the sphere or outside the sphere. As shown by equation (1) the potential inversely proportional to the distance V
V ∝ 1/r
The potential at the centre of the sphere depends on the radius R where the potential is the same for the entire sphere. As the charge q is the same and the term (1/4*π*∈o) is constant we could express a relation between the states , e inside the sphere and outside the sphere as next
V_1/V_2=r_2/r_1
V_inside/V_outside = r/R
V_inside = (r/R)*V_outside (2)
Now we can plug our values for r, R and V_outside into equation (2) to get V_inside
V_inside = (1.2 m )/(0.600)*18
= 36 V
V_inside = 36 V
The answer is B tell me if I am wrong.
<span>Both objects receive the same impulse.</span>
Answer: Option (A) is the correct answer.
Explanation:
When more and more energy is provided to a gas then its atoms move more rapidly.
This rapid and continuous movement converts the gas into hot ionized ions which have positively charged ions and negatively charged electrons.
Therefore, we can conclude that as the atoms move faster, the gas can change into a plasma.